Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model

نویسندگان

  • Weilin Qu
  • Issam Mudawar
چکیده

This paper is Part II of a two-part study devoted to measurement and prediction of the saturated flow boiling heat transfer coefficient in water-cooled micro-channel heat sinks. Part I discussed the experimental findings from the study, and identified unique aspects of flow boiling in micro-channels such as abrupt transition to the annular flow regime near the point of zero thermodynamic equilibrium quality, and the decrease in heat transfer coefficient with increasing quality. The operating conditions of water-cooled micro-channels fell outside the recommended range for most prior empirical correlations. In this paper, an annular flow model is developed to predict the saturated flow boiling heat transfer coefficient. Features unique to two-phase micro-channel flow, such as laminar liquid and vapor flow, smooth interface, and strong droplet entrainment and deposition effects, are identified and incorporated into the model. The model correctly captures the unique overall trend of decreasing heat transfer coefficient with increasing vapor quality in the low vapor quality region of micro-channels. Good agreement is achieved between the model predictions and heat transfer coefficient data over broad ranges of flow rate and heat flux. 2003 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow boiling heat transfer in two-phase micro-channel heat sinks––I. Experimental investigation and assessment of correlation methods

This paper is the first of a two-part study concerning measurement and prediction of saturated flow boiling heat transfer in a water-cooled micro-channel heat sink. In this paper, new experimental results are discussed which provide new physical insight into the unique nature of flow boiling in narrow rectangular micro-channels. The micro-channel heat sink contained 21 parallel channels having ...

متن کامل

Two-Phase Flow and Heat Transfer in Rectangular Micro-Channels

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogenwater two-phase flow in a rectangular micro-channel having a 0.40632.032 mm crosssection. Superficial velocities of nitrogen and water...

متن کامل

Transport Phenomena in Two-Phase Micro-Channel Heat Sinks

The design and reliable operation of a two-phase micro-channel heat sink require a fundamental understanding of the complex transport phenomena associated with convective boiling in small, parallel coolant passages. This understanding is the primary goal of this paper. This goal is realized by exploring the following aspects of boiling in microchannels: hydrodynamic instability, two-phase flow ...

متن کامل

Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics

This paper is the second of a two-part study concerning two-phase flow and heat transfer characteristics of R134a in a micro-channel heat sink incorporated as an evaporator in a refrigeration cycle. Boiling heat transfer coefficients were measured by controlling heat flux (q00 = 15.9 93.8W/cm) and vapor quality (xe = 0.26 0.87) over a broad range of mass velocity. While prior studies point to e...

متن کامل

Simulation of Boiling in a Vertical Channel Using Ensemble Average Model

Simulation of turbulence boiling, generation of vapour and predication of its behaviour are still subject to debate in the two-phase flow area and they receive a high level of worldwide attention. In this study, a new arrangement of the three dimensional governing equations for turbulence two-phase flow with heat and mass transfer are derived by using ensemble averaging two-fluid model and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003